A FLAVONE FROM ARTEMISIA CAPILLARIS

T. NAMBA, M. HATTORI, Y. TAKEHANA, M. TSUNEZUKA, T. TOMIMORI*, H. KIZU* and Y. MIYAICHI*

Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, Toyama, 930-01 Japan;
*School of Pharmacy, Hokuriku University, Kanazawa, 920-11 Japan

(Received 26 July 1982)

Key Word Index—Artemisia capillaris; Compositae; flower spikes; flavone; 5,2',4'-trihydroxy-6,7,5'-trimethoxy-flavone; structure elucidation.

Abstract—A new flavone was isolated from *Artemisia capillaris* and its structure was determined by spectroscopic methods as 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone.

In traditional Chinese medicine, the spikes of Artemisia capillaris Thunb. have been used in crude drug prescriptions for the treatment of icterus and infectious hepatitis. The essential oils [1] and its oil-free extract have been shown to increase bile secretion in rat [2]. As the active principles, scoparone and capillarisin were isolated [3-5] and shown to have choleretic action [4]. On the other hand, the drug extract was recently demonstrated to have inhibitory action on the adherence of Streptococcus mutans, a bacterium which causes dental caries in animals and humans, to teeth surfaces [6]. In the present communication, we report the isolation and structure elucidation of a new flavone in the course of a survey of antiplaque agents in traditional Chinese medicines [7,8].

The flavone (1) was obtained as pale yellow needles, mp $> 300^{\circ}$, $C_{18}H_{16}O_8$ (M⁺, 360), Mg–HCl (+), and formed a triacetate. The elemental composition and spectral characteristics indicated 1 to be a trihydroxytrimethoxyflavone. The UV spectrum and diagnostic shifts strongly suggested the presence of a 5,4'-dihydroxy system in 1 [9]. The ¹H NMR spectrum showed the signals due to three methoxy, two hydroxy, one hydrogen-bonded hydroxy and three aromatic (each singlet) and C-3 protons. These findings indicated that three of the six oxygen functions in 1 were in the B-ring at the 2',4',5'-positions and the rest in the A-ring at the 5,6,7-, 5,7,8- or 5,6,8-positions. Compound 1 gave a positive Gibbs indophenol test [10] and a negative SrCl₂-ammonia test [11]; thus, the only oxidation pattern tenable for the A-ring is 5,6,7, including a 5-hydroxy-6-methoxy system. The presence of 6-methoxyl, being diortho substituted by two oxygen functions, was further supported by the 13C NMR spectrum, in which the signal due to the 6-methoxyl appeared downfield (δ 60.1) compared with those of the other two isolated methoxyls [12]. In the UV spectrum, 1 showed no significant bathochromic shift of band II with sodium acetate, usually suggesting the presence of a 7-methoxyl in 1 [9]. It has, however, been reported that this spectral method for detecting a 7-hydroxyl is inapplicable to flavonoids possessing a 6-methoxyl [13–15]. Finally, the presence of a 7-methoxyl was confirmed by comparing the

EXPERIMENTAL

Isolation of a new flavone. The crude drug, A. capillaris spica (the spikes of A. capillaris Thunb.) (500 g), was extracted (\times 3) with MeOH (31.). The combined soln was concd to ca 21. and washed with n-hexane (21. \times 3). The resulting extract was then chromatographed on Si gel [4, 5]. A new flavone (1) was isolated in a yield of ca 15 mg, in addition to the previously reported compounds, scoparone, cirsilineol, cirsimaritin, rhamnocitrin, 2-(p-hydroxyphenoxy)-6,7-dimethoxy-5-hydroxychromone, 2-(p-hydroxyphenoxy)-5,7-dihydroxychromone.

Compound 1. Pale yellow needles, mp > 300° (from MeOH). $FeCl_3(+), Mg-HCl(+), Gibbs(+)[10], SrCl_2-NH_3(-)[11],$ Co reagent (-) [17, 18]. (Found: C, 60.03; H, 4.50. C₁₈H₁₆O₈ requires: C, 60.00; H, 4.48 %.) Accurate MS: observed 360.085, calcd. 360.084. UV λ_{max}^{MeOH} nm: 267, 373; NaOAc, 270, 420; NaOMe, 270, 428; AlCl₃, 240, 272 (sh), 298 (sh), 327 (sh), 376, 420 (sh); AlCl₃ + HCl, 240, 269 (sh), 298 (sh), 322 (sh), 372, 410 (sh); $H_3BO_3 + NaOAc$, 270, 378. IR $v_{max}^{KBr} cm^{-1}$: 3400 (OH), 1660, 1638 (conjugated C=O), 1600, 1573, (aromatic C=C). ¹H NMR (100 MHz, DMSO- d_6): δ 3.76, 3.84, 3.96 (each 3H, each s, OMe \times 3), 6.57 (1H, s, H-3')*, 6.96 (1H, s, H-8)*, 7.11 (1H, s, H-3)*, 7.46 (1H, s, H-6')*, 10.54 (1H, s, OH-2', OH-4'), 10.10 (1H, s, OH-2' or OH-4'), 13.00 (1H, s, OH-5). 13 C NMR (25 MHz, DMSO- d_6): δ 162.4 (s, C-2), 107.5 (d, C-3)*, 182.5 (s, C-4), 152.8 (s, C-5), 132.1 (s, C-6), 158.7 (s, C-7), 91.7 (d, C-8)*, 153.3 (s, C-9), 105.1 (s, C-10), 107.1 (s, C-1'), 152.2 (s, C-2'), 104.8 (d, C-3')*, 152.2 (s, C-4'), 141.9 (s, C-5'), 112.9 (d, C-6')*, 60.1 (q, OMe-6), 57.2, 56.5 (each q, OMe \times 2). MS, 70 eV, m/z (rel. int.): 360 [M]⁺ (100), 345 [M – Me]⁺ (99), 331 $[M-CHO]^+$ (21), 317 $[M-MeCO]^+$ (11), 181 $[A_1]$ $- \text{Me}^{+}$ (43), 167 $[B_2]^+$ (14), 165 $[B_1 + H]^+$ (29), 153 $[A_1]$

¹³C NMR spectra of 1 and its acetate with those of 5-hydroxy-6,7-dimethoxyflavone (2) and 5,7-dihydroxy-6-methoxyflavone, and their acetates. The carbon signals, due to the A-rings of 1 and its acetate, were superimposable on those of 2 and its acetate, respectively [16]. The remaining one methoxyl in the B-ring was readily proved to be at the 5'-position from the facts that the UV spectrum of 1 showed no bathochromic shift of band I in the presence of sodium acetate-boric acid [9], and the ortho-para-diphenol test using cobalt reagent [17, 18] was also negative. Thus, the structure of 1 was established as 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone.

^{*}Assignments were confirmed by selective decoupling.

- MeCO] + (34). On treatment with boiling Ac₂O-pyridine, 1 yielded an acetate, colourless needles, mp 188-189.5° (from CHCl₃-MeOH). (Found: C, 59.30; H, 4.52. C₂₄H₂₂O₁₁ requires: C, 59.26; H, 4.56%) UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 239, 262 (sh), 310. IR $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 1762 (OAc), 1624 (conjugated C=O), 1562 (aromatic C=C). ¹H NMR (100 MHz, DMSO- d_6): δ 2.32, 2.36, 2.42 (each 3H, each s, $OAc \times 3$), 3.80, 3.96, 4.05 (each 3H, each s, $OMe \times 3$), 6.54 (1H, s, H-3), 7.19 (1H, s, H-8), 7.24 (1H, s, H-3'), 7.55 (1H, s, H-6'). ¹³C NMR (25 MHz, DMSO- d_6): δ -159.4 (s, C-2), 111.5 (d, C-3), 175.2 (s, C-4), 141.6 (s, C-5), 139.3 (s, C-6), 157.9 (s, C-7), 99.0 (d, C-8), 153.8 (s, C-9), 110.5 (s, C-10), 123.0 (s, C-1'), 141.2 (s, C-2'), 119.1 (*d*, C-3'), 141.2 (*s*, C-4'), 149.3 (*s*, C-5'), 113.2 (*d*, C-6'), 61.0 (*q*, OMe-6), 56.8, 56.5 (each q, OMe \times 2), 169.1, 168.9, 168.3 (each s, OC OMe \times 3), 20.7, 20.6, 20.3 (each q, OCOMe \times 3). MS 70 eV m/z (rel. int.): 486 [M]⁺ (8), 444 [M – CH₂CO]⁺ (95), 402 [M $-CH_2CO \times 2$]⁺ (100), 387 (31), 360 [M $-CH_2CO \times 3$]⁺ (26) 345 (52), 181 (10), 167 (21), 153 (14).

Acknowledgements-We wish to thank Drs. M. Goto and T. Komiya (Takeda Chemical Industries, Ltd.) for providing various authentic samples isolated from A. capillaris.

REFERENCES

- 1. Miyazawa, M. and Kameoka, H. (1977) Phytochemistry 16,
- 2. Aburada, M., Sasaki, H. and Harada, M. (1976) Shoyakugaku Zasshi 96, 147.
- 3. Komiya, T., Tsukui, M. and Oshio, H. (1975) Chem. Pharm. Bull. 23, 1387.

- 4. Komiya, T., Tsukui, M. and Oshio, H. (1976) Yakugaku Zasshi 96, 841.
- 5. Komiya, T., Naruse, Y. and Oshio, H. (1976) Yakugaku Zasshi 96, 855.
- 6. Namba, T., Tsunezuka, M. and Hattori, M. Planta Med. (in press).
- 7. Namba, T., Tsunezuka, M., Bae, K. and Hattori, M. (1981) Shoyakugaku Zasshi 35, 295.
- 8. Namba, T., Tsunezuka, M. and Hattori, M. (1982) Planta Med. 44, 100.
- 9. Markham, K. R. (1975) in The Flavonoids (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.) pp. 45-61. Chapman & Hall, London.
- 10. King, F. E., King, T. J. and Manning, C. (1957) J. Chem. Soc.
- 11. Shimizu, M. and Morita, N. (1968) Yakugaku Zasshi 88. 1450.
- 12. Panichpol, K. and Waterman, P. G. (1978) Phytochemistry 17, 1363.
- 13. Lee, H. H. and Tan, C. H. (1965) J. Chem. Soc. 2743.
- 14. Farkas, L., Nogradi, M., Sadarsanam, V. and Herz, W. (1966) J. Org. Chem. 31, 3228.
- 15. Bhardwaj, D. K., Bisht, M. S. and Mehta, C. K. (1980) Phytochemistry 19, 2040.
- 16. Iinuma, M., Matsuura, S. and Kusuda, K. (1980) Chem. Pharm. Bull. 28, 708.
- 17. Hasegawa, M. (1958) in Zikken Kagaku Koza (The Chemical Society of Japan, ed.) Vol. 22, p. 291. Maruzen Co. Ltd., Tokyo.
- 18. Markham. K. R. (1964) Tetrahedron 20, 991.

Phytochemistry, Vol. 22, No. 4, pp. 1058-1060, 1983. Printed in Great Britain.

0031-9422/83/041058-03\$03.00/0 © 1983 Pergamon Press Ltd.

TWO FURTHER ACYLATED FLAVONE GLUCOSIDES FROM ANISOMELES OVATA

L. JAGAN MOHAN RAO, G. N. KRISHNA KUMARI and N. S. PRAKASA RAO*

Department of Chemistry, Nagarjuna University, Nagarjunanagar 522 510, Andhra Pradesh, India

(Revised received 10 September 1982)

Key Word Index—Anisomeles ovata; Labiatae; aerial parts; apigenin 7-O-β-D-(2",6"-di-O-p-coumaroyl)glucoside; apigenin 7-O-β-D-(4",6"-di-O-p-coumaroyl)glucoside.

Abstract—The structures of two new acylated apigenin glucosides are reported from the aerial parts of Anisomeles ovata. They were separated as their acetates and identified as apigenin 7-O-β-D-(2",6"-di-O-p-coumaroyl)glucoside and apigenin 7-O-β-D-(4",6"-di-O-p-coumaroyl)glucoside by ¹H NMR study of the acetates and by chemical degradative methods. The allocation of the p-coumaroyl moieties is also supported by a study of the ¹³C NMR spectrum of the inseparable mixture of glucosides.

INTRODUCTION

In an earlier communication [1] we have reported the isolation of a new compound anisofolin-A [apigenin 7-0-

 β -D-(3",6"-di-O-p-coumaroyl)glucoside from the aerial parts of Anisomeles ovata R. Br. The present communication deals with the characterization of two new compounds 1 and 2 from a study of their acetates.

^{*}Author to whom correspondence should be addressed.